Virtual Movement of the Ankle and Subtalar Joints Using Cadaver Surface Models

Tweet about this on TwitterShare on FacebookEmail this to someoneShare on Google+

Dong Sun Shin & Min Suk Chung

Summary

Medical students in the dissection room do not fully understand the ankle joint for dorsiflexion and plantar flexion as well as the subtalar joint for inversion and eversion. Thus, a three-dimensional simulation of the movements would be beneficial as a complementary pedagogic tool. The bones and five muscles (tibialis anterior, tibialis posterior, fibularis longus, fibularis brevis, and fibularis tertius) of the left ankle and foot were outlined in serially sectioned cadaver images from the Visible Korean project. The outlines were verified and revised; and were stacked to build surface models using Mimics software. Dorsiflexion and plantar flexion were simulated using the models on Maya to determine the mediolateral axis. Then, inversion and eversion were done to determine the anteroposterior axis. The topographic relationship of the two axes with the five affecting muscles was examined to demonstrate correctness. The models were placed in a PDF file, with which users were capable of mixed display of structures. The stereoscopic image data, developed in this investigation, clearly explain ankle movement. These graphic contents, accompanied by the sectioned images, are expected to facilitate the development of simulation for the medical students' learning and the orthopedic surgeons' clinical trial.

KEY WORDS: Ankle Joint; Subtalar Joint; Visible Human Projects; Computer-Assisted Image Processing; Three-Dimensional Imaging; User-Computer Interface.

How to cite this article

SHIN, D. S. & CHUNG, M. S. Virtual movement of the ankle and subtalar joints using cadaver surface models. Int. J. Morphol., 33(3):888-894, 2015.