The purpose of this study was to evaluate the chronic effects of stretching exercise on soleus muscle histomorphology and histomorphometry of young and aged rats. Thirty-eight female rats were divided into young control group (YCG, n=10;274±50 g); young stretching group (YSG, n=8;274±12 g); aged control group (ACG, n=10;335±39 g); and aged stretching group (ASG, n=10;321±32g). A mechanical apparatus was used to stretch muscle in 4 repetitions, 60 s each, 30 s interval between repetitions in each session, 3 times a week for 3 weeks. Twenty-four hours after the last stretching session, soleus muscle was removed for micromorphology and immunostaining analysis. Data analyses were performed with one-way ANOVA, post-hoc Tukey, or Kruskal-Wallis tests for parametric and nonparametric, respectively (p≤0.05). Muscle fiber cross-sectional area (MFCSA) of ACG was lower (18 %) compared to the YCG. Stretching increased MFCSA comparing YSG to YCG (5,681.15± 1,943.61 μm2 vs 5,119.84±1,857.73 μm2, p=0.00), but decreased comparing ASG to ACG (3,919.54± 1,694.65 μm2 vs 4,172.82±1,446.08 μm2, p=0.00). More serial sarcomere numbers were found in the YSG than YCG (12,062.91±1,564.68 vs 10,070.39±1,072.38, p=0.03). Collagen I and collagen III were higher in YSG than ASG (7.44±7.18 % vs 0.07±0.09 %, p=0.04) and (14.37 %± 9.54 % vs 5.51 %±5.52 %, p=0.00), respectively. TNF-a was greater in ASG than YSG (43.42 %±40.19 % vs 1.72 ± 2.02 %, p=0.00). Epimysium was larger in the YSG compared to YCG (201.83±132.07 % vs 181.09±147.04 %, p=0.00). After 3-week stretching the soleus muscles from aged rats were smaller than their younger counter-parts. Interestingly, while stretching appeared to positively affect young soleus muscle, the opposite was detected in the muscle of the aged rats.
KEY WORDS: Aging; Muscle stretching exercise; Cellular mechanotransduction; Muscle plasticity.