Predicción del Sexo del Hueso Hioides a Partir de Imágenes de Tomografía Computarizada Utilizando el Modelo de Aprendizaje Profundo DenseNet121

DOI :
Tweet about this on TwitterShare on FacebookEmail this to someoneShare on Google+

Rukiye Sumeyye Bakici; Muhammet Cakmak; Zulal Oner & Serkan Oner

Resumen

El estudio tuvo como objetivo demostrar el éxito de los métodos de aprendizaje profundo en la predicción del sexo utilizando el hueso hioides. En el estudio se escanearon retrospectivamente las imágenes de personas de entre 15 y 94 años que se sometieron a una tomografía computarizada (TC) de cuello. Las imágenes de TC del cuello de los individuos se limpiaron utilizando el programa RadiAnt DICOM Viewer (versión 2023.1), dejando solo el hueso hioides. Se obtuvieron un total de 7 imágenes en las direcciones anterior, posterior, superior, inferior, derecha, izquierda y derecha-anterior-superior a partir de una imagen seccionada del hueso hioides de un paciente. Se obtuvieron 2170 imágenes de 310 huesos hioides de hombres y 1820 imágenes de 260 huesos hioides de mujeres. Se completaron 3990 imágenes a 5000 imágenes mediante enriquecimiento de datos. El conjunto de datos se dividió en un 80 % para entrenamiento, un 10 % para pruebas y otro 10 % para validación. Se comparó con los modelos de aprendizaje profundo DenseNet121, ResNet152 y VGG19. Se logró una tasa de precisión del 87 % en el modelo ResNet152 y del 80,2 % en el modelo VGG19. La tasa más alta entre los modelos clasificados fue del 89 % en el modelo DenseNet121. Este modelo tenía una especificidad de 0,87, una sensibilidad de 0,90, una puntuación F1 de 0,89 en mujeres, una especificidad de 0,90, una sensibilidad de 0,87 y una puntuación F1 de 0,88 en hombres. Se observó que se podía predecir el sexo a partir del hueso hioides utilizando los métodos de aprendizaje profundo DenseNet121, ResNet152 y VGG19. De esta manera, se utilizó un método que no se había probado antes en este hueso. Este estudio también nos acerca un paso más al fortalecimiento y perfeccionamiento del uso de tecnologías, que reducirán la subjetividad de los métodos y apoyarán al experto en el proceso de toma de decisiones de predicción del sexo.

PALABRAS CLAVE: Hueso hioides; Aprendizaje profundo; Estimación del sexo; DenseNet121; ResNet152; VGG19.

Como citar este artículo

BAKICI, R. S.; CAKMAK, M.; ONER, Z. & ONER, S. Sex prediction of hyoid bone from computed tomography ımages using the DenseNet121 deep learning model. Int. J. Morphol., 42(3):826-832, 2024.