Pablo Manríquez Villarroel; Marcelo Tuesta; Álvaro Reyes Ponce & Claudio Núñez Burgos
The purposes of the present study were first to evaluate the association between anthropometric dimensions of the thorax and trunk with spirometric indices, second, to fit a prediction equation with anthropometric dimensions of the trunk, and third, to compare our predictive model with two diagnostic equations. Fiftynine university students between 20 and 40 years old, of both sexes and non-smokers were recruited. Variables considered were age, sex, weight, height, chest transverse diameter, chest anteroposterior diameter, chest perimeter, chest height, trunk height, maximum expiratory flow (PEF), forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC). Multiple regression analysis was used to estimate spirometric values based on demographic and anthropometric variables. FVC and FEV1 have a direct linear association with chest transverse diameter, chest height, chest circumference, and trunk height. A multiple linear regression equation was fitted, indicating that it is possible to estimate FVC and FEV1 as a function of trunk height and chest girth for both sexes. These variables can explain 74 % of the FVC values and 68 % of the FEV1 values. Comparing the values obtained by our predictive equations with the national reference equations, we observe that our results are closer to those of Quanjer et al. (2012) than to those of Knudson et al. (1983). Trunk height and chest circumference have a direct association with FEV1 and FVC and are good predictors of FEV1 and FVC in university students. Our estimated values are closer to Quanjer et al. (2012) than Knudson et al. (1983) prediction equations.
KEY WORDS: Spirometry; Anthropometry; Forced Vital Capacity; Forced Expiratory Volume.
MANRÍQUEZ, V. P.; TUESTA, M.; REYES, P. A. & NÚÑEZ, B. C. Association between anthropometric dimensions of trunk and spirometry indices. Int. J. Morphol., 41(2):437-444, 2023.